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Abstract—Smalltalk, one of the first object-oriented program-
ming languages, has had a tremendous influence on the evolution
of computer technology. Due to the simplicity and productivity
provided by the language, Smalltalk is still in active use today
by many companies with large legacy codebases and with new
code written every day.

A crucial problem in Smalltalk programming is the race
condition. Like in any other parallel language, debugging race
conditions is inherently challenging, but in Smalltalk, it is even
more challenging due to its dynamic nature. Being a purely
dynamically-typed language, Smalltalk allows assigning any object
to any variable without type restrictions, and allows forking new
threads to execute arbitrary anonymous code blocks passed as
objects. In Smalltalk, race conditions can be introduced easily,
but are difficult to prevent at run time.

We present SmallRace, a novel static race detection framework
designed for multithreaded dynamic languages, with a focus on
Smalltalk. A key component of SmallRace is SmallIR, a subset
of LLVM IR, in which all variables are declared with the same
type—a generic pointer i8*. This allows SmallRace to design an
effective interprocedural thread-sensitive pointer analysis to infer
the concrete types of dynamic variables. SmallRace automatically
translates Smalltalk source code into SmallIR, supports most of
the modern Smalltalk syntax in Visual Works, and generates
actionable race reports with detailed debugging information.
Importantly, SmallRace has been used to analyze a production
codebase in a large company with over a million lines of code,
and it has found tens of complex race conditions in the production
code.

I. INTRODUCTION

Race conditions are among the worst types of bugs to
encounter in software programs. Due to their non-deterministic
nature, race conditions often lead to unpredictable behaviors
and it is notoriously difficult to reproduce and debug a race
in production environments. The race detection problem has
inspired a significant amount of research efforts in different
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languages and platforms, such as Java, JavaScript, Android,
C/C++, and OpenMP [1]–[12]. This work focuses on race
detection for Smalltalk, an object-oriented dynamic language.

Developed in the 1970s, Smalltalk was one of the most
popular programming languages, and is still actively used
today in the semiconductor, manufacturing, financial industries,
and many others [13]. These industries all have core business
applications written in Smalltalk with large legacy codebases
that must be maintained and developed to meet business needs.

Smalltalk programs are prone to race conditions but are
extremely challenging to debug due to the high flexibility of
the language and the complex runtime. Everything in Smalltalk
is an object, a chunk of code that manages a specific piece
of data. Other objects act upon that data by passing messages
to its object. Smalltalk allows assigning any object to any
variable without type restrictions. The Smalltalk virtual machine
performs the type check only at runtime. It considers the type
of an object as valid if it implements the message sent to it,
otherwise, it throws an exception. Smalltalk incorporates green
thread, and it emulates multi-threaded environments without
relying on the native OS. Moreover, an object can re-compile
itself by executing new code every time it is updated, and can
work with other objects as a program by exchanging messages.
While this approach makes code reusable and easy to test,
it also makes it easy to introduce errors at runtime. This is
especially true when race conditions are introduced by dynamic
code that forks new threads at bad timing, with an incorrect
priority, or without proper lock protection on shared variable
accesses.

In this paper, we present SmallRace, an end-to-end
static analysis framework for detecting race conditions in
multithreaded dynamic languages, with a focus on Smalltalk.
SmallRace addresses many technical and practical challenges
that are essential in handling dynamic language features such
as dynamic types, closures, and variable scopes. SmallRace
is based on LLVM [14], a popular compiler toolchain
that contains many modular and reusable libraries and
tools for building compilers. LLVM is widely adopted for



LLVM   IRGen

Extraction & 
Preprocessing

Source Code AST

Overview

Smalltalk IMG MLIR

Lexer & 
Parser

SmallRace – IR – Generator

Syntax
Analysis

SmallIR

Analyze Access 
Protection

Extract Reads & 
Writes

Data Race 
Detect

Shared 
Variables

Happens-
before, 
Locks

SmallRace – Detector

Pointer 
Analysis

Race Detect & 
Result Ranking

Rebuild

Data Race Report

Fig. 1. An Overview of the SmallRace Framework.

program optimization [15]–[17], code generation [18]–[20],
and vulnerability detection [21], [22]. Central to LLVM is the
LLVM IR, a low-level intermediate representation that serves as
the common interface to work with other LLVM components.

An overview of SmallRace is depicted in Fig. 1. SmallRace
works by first compiling a Smalltalk image containing all
the source code into Smalltalk LLVM IR (SmallIR), which
follows the same format as LLVM IR (SmallRace-IR-Generator
phase). A main technical challenge is that standard LLVM
IR must have a type, but Smalltalk variables do not have
a static type. To address this problem, our novel SmallIR
translates all variables in the IR into generic pointer types i8*.
It exclusively uses pointers in IR generation to preserve all
Smalltalk semantics, allowing faster pointer analysis and type
inference.

With SmallIR, we can offload type inference into the
analysis (SmallRace-Detector phase). We propose demand-
driven type inferences and reduce the overall workload by
only considering variables that need type assignments. This
phase has multiple technically interesting components, which
are built on top of an interprocedural thread-sensitive data flow
analysis on pointers. We generate a ranked data race report
by analyzing memory accesses on shared variables that do
not have a happens-before relation and are not protected by
the same locks or synchronizations. With static analysis, the
runtime environment is not required for SmallRace. Compared
with dynamic analysis, SmallRace achieves high code coverage,
and explores code paths independent of the number of threads
and input.

The main contributions of this work are:

• To our knowledge, we are the first to build an end-to-end
static race detector for Smalltalk, a dynamically-typed
language with challenging features such as dynamic types,
closures, and code blocks.

• We propose a novel approach to generate LLVM IR
for dynamically-typed languages, and introduce SmallIR
designed for Smalltalk. The key novelty of SmallIR is that
it exclusively uses pointers in our IR generation phase to
preserve all Smalltalk semantics.

• SmallRace is fully automated and scales to large complex
codebases containing millions of lines of code.

• SmallRace has been evaluated extensively on benchmarks
from small tests to a large-scale production code base, all
provided by our industry partner. It has revealed 37 real
race conditions in the production code confirmed by the
developers.

• We have released a version of SmallRace as open source
and publicly available on GitHub1.

II. BACKGROUND AND MOTIVATION

In this section, we review important language features of
Smalltalk, and illustrate the technical challenges of Smalltalk
race conditions with examples.

A. Smalltalk Language

Smalltalk is a dynamically-typed reflective programming
language with a unique feature: everything in Smalltalk is
an object. There are no constructors, static methods, type
declarations (dynamic), interfaces, or package/private/protected
modifiers in Smalltalk. All methods are public virtual, and
all attributes are protected and private to the object while
accessible from subclasses. There is only single inheritance
between classes.

Smalltalk provides a clean and elegant syntax that can
be extended easily [13]. There are multiple standards and
dialects with variations in Smalltalk grammar, such as Visual
Works [23], GNU Smalltalk [24], Pharo [25], and Squeak [26].
In this work, we focus on Visual Works. Visual Works consists
of two key components: (1) a virtual image contains all objects
in the system; (2) a virtual machine consists of hardware and
software to give dynamics to objects in an image. This design
ensures the portability of the virtual image.

There are three key concepts in Smalltalk related to race
conditions: threads, code blocks, and semaphores.

• Threads. Smalltalk allows multiple threads to execute
(pseudo) concurrently. Similar to Java threads and await
in JavaScript, all threads in Smalltalk run within the same
address space (a single operating system process) and can

1https://github.com/parasol-aser/smallrace-open-source
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communicate via shared objects [27]. Thread scheduling
is priority-driven, with preemptive time slicing within
each priority level. Scheduling is implemented fully in
Smalltalk.

• Code Blocks. In Smalltalk, a closure is a code block, a
self-contained code snippet enclosed in the square brackets
for computation. The statements in a code block are not
immediately evaluated, and can be activated by sending
the #value message to the code block object. Code
blocks are responsible for thread creation. In Smalltalk, a
thread is created when a code snippet is wrapped around
a code block and a fork message is sent to that block.
(i.e., call fork or forkAt: p, where p holds the value
of priority).

1 | test |
2 test := SharedState new.
3 test initialize.
4 test start.
5 (Delay forSeconds: 10) wait.
6 test stop.
7

8 <class>
9 <name>SharedState</name>

10 <super>Core.Object</super>
11 <class-vars></class-vars>
12 <inst-vars>max shared thread1 thread2 </inst-vars>
13 </class>
14 <body package="SharedState"

selector="initialize">initialize
15 max := 1000000.
16 shared := Array new: max.
17 ˆself
18 </body>
19 <body package="SharedState" selector="start">start
20 self startThread1.
21 self startThread2.
22 </body>
23 <body package="SharedState"

selector="startThread1">startThread1
24 | race |
25 thread1 := [
26 [race := 0.
27 1 to: max do: [:index|shared at: index put:1].
28 shared do:
29 [:each|each=1 ifFalse: [race := race+1]].] ]

forkAt: 30
30 </body>
31 <body package="SharedState"

selector="startThread2">startThread2
32 | race |
33 thread2 := [
34 [race := 0.
35 1 to: max do: [:index | shared at: index put: 2].
36 shared do:
37 [:each|each=2 ifFalse: [race := race + 1]].]

] forkAt: 31
38 </body>

Listing 1. A simplified race condition in Smalltalk

• Semaphores. In Smalltalk, semaphores are used to
implement lock mutual exclusion and other synchro-
nization mechanisms. For example, to create a critical
section, a semaphore object can be instantiated by sem
:= Semaphore forMutualExclusion and used
by sending a critical: message: sem critical:
codeBlock.

In Smalltalk, a higher-priority process will preempt all lower-
priority processes. (1) A new process will start evaluating
if all other processes with a priority equal or higher to the
new process are waiting on a preemption point (Semaphore
wait); (2) A new process will preempt all other processes
with a lower priority.

Smalltalk implements a green thread system, and threads are
scheduled by the Smalltalk virtual machine instead of the OS.
The Smalltalk virtual machine executes one instruction at a time,
ensuring a sequentially consistent view of all memory accesses.
However, due to the priority-driven nature, read-modify-write
sequences can race. Any read-modify-write on the instance
variables of shared objects is a potential race condition with
different order of execution on reads and writes.

B. Smalltalk Race Conditions

We use an example in Lst. 1 to illustrate race conditions.
Lines 1-6 show a test script, i.e., the main entry point. It declares
a local variable test (Line 1), creates a new SharedState
object and assigns it to the local variable test, and sends
the messages initialize and start to the object (similar
to calling test.initialize() and test.start() in
Java). It waits for 10 seconds and then sends the stop message
to test.

Lines 8-13 define the SharedState class and variables.
SharedState has four instance variables max, shared,
thread1 and thread2. It does not have any class variable
and its superclass is Core.Object, the root of the class
hierarchy.

Lines 14-38 define the Smalltalk methods of
SharedState. The initialize method defined at
Line 14 sets the value of max, and initializes a shared
variable shared to be an array of size max. The method calls
startThread1 and startThread2 in the start method
to create new threads by calling forkAt: priority. In
each thread, the shared variable is updated in a loop by
writing a different value into the shared array, which is then
used for counting the number of races. The race condition is
caused by the two threads trying to write to the same shared
array at the same index, while not being protected by a lock.

Detecting the race condition in Smalltalk has several
challenges compared to a statically typed language.

• First, all variables, including local variables (test, race)
and class instance variables (max, shared, thread1,
and thread2), are declared without types. The types are
important to recognize the method called by a message.
For instance, test start calls the method start
(Line 19). Without knowing that the type of test is
SharedState statically, it is difficult to determine the
call target, since a method start may be defined in
many other classes.

• Second, threads are created by sending a forkAt:
message to a code block, which defines the thread body.
However, the code block can be defined elsewhere and
passed to the fork site.



• Third, the variables used in a code block can be defined in
outer scopes. Code blocks can be nested, and inner blocks
can refer to any statically visible outer scope’s variables.
For example, both thread1 and thread2 use a local
variable race defined outside the code block and use the
class instance variable shared of the test object. It is
difficult to find which variable is thread local and which
is shared by multiple threads.

1 "workspace script"
2 |x y|
3 x := 0.
4 y := 0.
5 [
6 |t1 t2|
7 t1 := x.
8 t2 := t1.
9 [

10 y := t1 + t2.
11 ] forkAt: 20.
12 ] forkAt: 10.
13 x := y.

Listing 2. An illustration of races in Smalltalk closures

Technical Challenges on Closures. In Lst. 2, there are three
threads: the main thread (T0), the thread (T1) created by T0
(Line 12) executing the code block between Lines 5-12, and the
thread (T2) created by T1 (Line 11) executing the code block
between Lines 9-11. The local variables x and y defined in
T0 are used in T1 and T2 respectively, and the local variables
t1 and t2 defined in T1 are both used in T2. Although x
and y are defined as local variables in T0, there exist race
conditions on them because x and y are also implicitly passed
to the code blocks and used in other threads. The races on
x are between Line 13 (written by T0) and Line 7 (read by
T1). The races on y are between Line 13 (read by T0) and
Line 10 (written by T2). However, there does not exist any
race on the local variables t1 and t2, because their accesses
by T1 and T2 are all happens-before ordered.

III. SMALLRACE IN A NUTSHELL

In this section, we present an overview of SmallRace (Fig. 1)
and illustrate how it works on the motivating examples in
Lsts. 1-2.

SmallRace has two major components: (1) SmallRace-IR-
Generator generates SmallIR from source code; (2) SmallRace-
Detector generates a data race report based on the SmallIR.
In IR-Generator, the input is a collection of source code file
out files (.st files) containing program libraries, and optionally
together with a workspace file (.ws file) for the entry point.
We define the language grammar for Visual Work Smalltalk
in ANTLR [28], and parse both the file out source code and
workspace file. An abstract syntax tree (AST) is generated, and
then translated into our SmallIR instruction by instruction.

We design the SmallIR, a dialect of LLVM IR, to preserve
all Smalltalk semantics while parsing. Type inference for
each variable is required to build LLVM IR, as standard
LLVM IR requires a type. For example, to emit a load

or store instruction, the type specified must be a first-
class type of known size. For a dynamically-typed language
such as Smalltalk, inferring type statically is challenging and
computationally expensive. SmallIR models types of variables
exclusively as pointers. It represents types at the IR level as
generic pointers, and models Smalltalk semantics with call
instructions. SmallIR can preserve all Smalltalk semantics into
IR, and allows for offloading the type inference as demand-
driven in the analysis phase. As we do not need typing for
every variable to detect race conditions, the novel SmallIR
design improves the analysis efficiency with demand-driven
type inference.

SmallRace-Detector analyzes the SmallIR, and performs a
series of analyses to detect race conditions: (1) identifying
threads, (2) finding conflicting accesses from multiple
threads, (3) lockset [29], and (4) happens-before. The race
detection algorithm is illustrated in Alg. 3. SmallRace-Detector
incorporates pointer analysis to traverse instructions of each
thread, extracts the memory accesses (variable reads and writes),
and synchronizations (locks and semaphores). It analyzes all
the knowledge we gathered from SmallIR, checks happens-
before and lockset conditions, and generates a race report.

Lst. 3 shows the SmallIR generated for the code in
Lst. 2. To detect races based on the IR, we first perform an
interprocedural thread-sensitive pointer analysis to determine
the type of each variable, which is marked by i8* in the
IR. The type inference is important for determining the call
target of any call instruction st.call.*. For example,
the source code ”test start” on Line 4 of Lst. 1 will
generate a call instruction call @st.call.start(i8*
%1), in which %1 refers to the variable test. The
pointer analysis will identify that the type of %1 is
SharedState and, therefore, we can determine the call
target is start$SharedState. In addition to type inference,
pointer analysis is used to determine the object of every memory
access. For example, in st.model.opaqueAssign(i8*
%dst, i8* %src), if pointer analysis infers that %src may
point to a certain object o1, and %dst may point to a certain
object o2, we can extract a read access to o1 and a write
access to o2.

Being thread-sensitive, the pointer analysis uses the thread
creation site (e.g. the instruction st.forkAt:) to represent
the context of each pointer variable. This leads to a highly
precise and scalable pointer analysis. We will elaborate on our
pointer analysis algorithm in more detail in Section V-A.

After pointer analysis, we launch our static tracing from an
entry point, traverse instructions, track thread creations and data
flows, and extract race-relevant information including memory
accesses (initialization, read, and write) and synchronizations.
To detect a race, we check if there are two or more threads
accessing the same variable, at least one is a write, and two
accesses are not protected by a common lock (lockset) and
without a Happens-Before (HB) relationship. We will report a
potential race for those cases.

We illustrate our analysis approach for the race condition
(Lst. 1) in Fig. 2. There are user-defined methods start,



1 define i8* @"st.anonfun.1*main"(i8* %0, i8* %1,
i8* %2) !dbg !3 {

2 %4 = call i8* @st.model.newTemp(@t1), !dbg !7
3 %5 = call i8* @st.model.newTemp(@t2), !dbg !9
4 call void @st.model.opaqueAssign(i8* %4, i8*

%1), !dbg !10
5 call void @st.model.opaqueAssign(i8* %5, i8*

%4), !dbg !11
6 %6 = call i8*

@st.model.blockParam4(@"st.anonfun.2*
7 st.anonfun.1*main.1", i8* %4, i8* %5, i8* %2),

!dbg !12
8 %7 = call i8* @"st.forkAt:"(i8* %6, 20), !dbg

!12
9 ret i8* %0, !dbg !13

10 }
11

12 define i8* @"st.anonfun.2*st.anonfun.1*main"(i8*
%0, i8* %1, i8* %2, i8* %3) !dbg !14 {

13 %5 = call i8*
@st.model.binaryop(@"global_op_+", i64 0,
i64 0), i8* %1, i8* %2), !dbg !15

14 call void @st.model.opaqueAssign(i8* %3, i8*
%5), !dbg !17

15 ret i8* %0, !dbg !18
16 }
17

18 define i64 @main() !dbg !19 {
19 %1 = call i8* @st.model.newTemp(@x), !dbg !20
20 %2 = call i8* @st.model.newTemp(@y), !dbg !22
21 call void @st.model.opaqueAssign(i8* %1, 0),

!dbg !23
22 call void @st.model.opaqueAssign(i8* %2, 0),

!dbg !24
23 %3 = call i8*

@st.model.blockParam3(@"st.anonfun.1*main.2",
i8* %1, i8* %2), !dbg !25

24 %4 = call i8* @"st.forkAt:"(i8* %3, 10), !dbg
!25

25 call void @st.model.opaqueAssign(i8* %1, i8*
%2), !dbg !26

26 ret i64 0, !dbg !27
27 }

Listing 3. Partial SmallIR generated for Lst.2
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Fig. 2. Visualization for the race in Lst. 1.

startThread1/2, and multiple anonymous methods
representing code blocks. To detect races, threads are identified

in the IR, created by fork or forkAt:. We find two
threads created at startThread1 and startThread2,
respectively. The next step is to check memory accesses. The
thread1 spawn from startThread1 modifies the instance
variable shared, while thread2 also accesses the same
variable and writes a different value. Since there is no lock
protection, we will report a race.

IV. SMALLRACE-IR-GENERATOR

A. Lexing, Parsing, and AST Design

The Smalltalk image contains all the source code in XML
format using the file out option in Visual Works. We define
our grammar in ANTLR [28] to parse the Smalltalk source
code, and produce a parse tree for each function. Although
ANTLR offers a standard Smalltalk grammar [30] from the
Redline Smalltalk Project, differences in syntax between Visual
Works and Redline Smalltalk result in many parsing errors. To
address this, we developed a dedicated grammar for Visual
Works. Fixing the grammar issues is a labor-intensive effort.
Our Visual Works Smalltalk grammar can successfully parse
all the 190,467 functions in the production code base with only
24 errors, for a success rate of over 99%. We translate the
parse trees into customized AST nodes preserving all Smalltalk
class metadata, and generate SmallIR based on our AST with
debugging symbols to facilitate the data race detection.

Our AST design follows ideas from Clang and Flang.
We use ParseTreeVisitor in ANTLR to traverse the
parse tree and generate the AST. In SmallRace, all AST
nodes are designed to be subclasses of the BaseAST class,
capturing general information (source code location, AST
level, and AST types). Extended from BaseAST, each AST
class captures a specific parsing unit, and is later responsible
for generating SmallIR with the carried information. For
example, BlockExprAST represents the expression class
for code blocks, e.g., [Transcript show: race]. The
class fields include the parameters passed to the code block
and local variables defined in the code block, both of which
are modeled as VarDeclExprAST. BlockExprAST also
contains a parent scope, which is either a FunctionAST or
another BlockExprAST. With this design philosophy, our
AST can be easily extended to support increasing features and
semantics in Smalltalk.

Our AST is designed to capture most semantics that is
critical for race detection and other analyses for Smalltalk. For
example, when the AST visitor encounters a temporary variable,
we do not have the type declaration as Smalltalk is dynamically
typed. We create a VarDeclExprAST without any type
information, and postpone the type inference to the analysis
phase. Function calls will produce a FunctionCallAST,
modeling a message being sent to an object. In Smalltalk.
A unary message ”new” sent to an object would call the
constructor function of objects if not overloaded. At the
AST level, initializing an object is represented similarly
to other unary messages, and a FunctionCallAST
is emitted. For example ”SharedState new” at line 2
(Lst. 1) will generate a FunctionCallAST with callee



as ”new” targeting ”SharedState”. Different messages will
be translated into subclasses of FunctionCallASTs, such as
KeywordFunctionCallAST of Delay forSeconds:
10 (Line 5 of Lst. 1).

B. SmallIR Generation

We construct SmallIR, a Smalltalk intermediate representa-
tion compatible with LLVM IR, using Multi-Level Intermediate
Representation (MLIR) [31]. MLIR has a standard dialect and
many other dialects to support different IRs, giving us more
flexibility in IR generation. To generate SmallIR, we define a
new Smalltalk dialect, and lower our AST to first the MLIR
and then the SmallIR in LLVM IR forms. We lower most
Smalltalk code into function calls, including creating new
variables, objects, and assignments between variables.

TABLE I
SMALLIR DEFINITION

Smalltalk code SmallIR Model Function
|a| st.model.newTemp(i8* a)
Collection new. st.model.newObject(i8* @Collection)
a + b st.model.binaryop(i8* op +,i8* a, i8* b)
a var st.model.instVar(i8* @var)
[:a|...] st.model.blockParam(i8* a, ...)
a := b st.model.opaqueAssign(i8* a, i8* b)

In SmallIR, almost all the IR instructions (except function
return ret) are LLVM call instructions, and every call
instruction will call a function name that starts with
either st.model.* (denoting special model functions in
SmallRace), st.anonfun.* (denoting code blocks), or
a normal function defined in the Smalltalk source code
(st.call.*). All variables are represented by a universal
pointer type i8*.

The list of model functions in SmallIR is shown in Table I.
Each captures a certain semantic of Smalltalk. We omitted the
st.model. for simplification.

• newTemp(i8* @x) creates a local variable x.
• newObject(i8* @x) creates a object named x.
• binaryop(i8* %st.global_op, i8* %1,
i8* %2) invokes a binary operation (e.g. +, -, *, /)
on two variables %1 and %2 and returns the value.

• instVar(i8* @x) creates a reference to a class
instance variable named x.

• blockParam(i8* %st.anonfunc, ...) links
the parameters of a code block from its outer scope.

• opaqueAssign(i8* %dst, i8* %src) reads a
variable %src, assigns it to another variable %dst.

Code blocks are represented by anonymous functions.
For example, the call instruction st.forkAt:(i8*
%st.anonfun.main.1, i8* @"10") creates a thread
with priority 10. The new thread executes the code block
represented by function st.anonfun.main.1.

With SmallIR, SmallRace has the ability to deal with
Smalltalk language features. Our novel IR represents types
as generic pointers, and models Smalltalk semantics with call
instructions. We exclusively use pointers in SmallIR generation

to preserve all the semantics and perform on-demand type
inference to improve efficiency.

Handling Nested Code Blocks. Code blocks are one of
the key components in Smalltalk semantics related to race
detection. Smalltalk supports nested blocks. The variables used
inside a code block can be defined in an outer scope, either
a function or another code block. As we lower code blocks
to anonymous functions, the pointers to variables defined in
outer scopes are added to the function signatures. Variables that
do not appear in block parameters and are not defined inside
the current block are modeled as parameters of anonymous
functions. We only add the variables that are used inside a
code block.

For functions that are called with a block as an argument,
we pack the block along with all outer scope variables by
generating a st.model.blockParam instruction and
map the corresponding arguments in the outer scope. For
example, when coming across functions creating new threads,
we create a context %c for the anonymous function func
wrapped with actual parameters v0 · · · vn−1, and feed into
the fork function. We emit two SmallIR instructions: %c =
blockParam(func, l0, · · · , ln−1); st.forkAt(%c, priority);
The linking between formal parameters and actual parameters
is conducted in the analysis phase.

V. SMALLRACE-DETECTOR

To detect race conditions, SmallRace-Detector has three
whole program passes. The first two passes perform an inter-
procedural thread-sensitive pointer analysis to infer types for the
pointer variables. The third pass extracts static thread traces,
finds shared variables, and performs race checking using a
hybrid happens-before and lockset analysis. We examine each
pair of read/write on a shared variable. If one of the memory
accesses is a write, and two memory accesses are executed on
different threads without proper protections (e.g., are protected
by a common lock, or have a happens-before order), we will
report a race.

To build stack traces for a piece of code, we build two
graphs, i.e., a call graph and a constraint graph.
The constraint graph captures the memory correlation between
two LLVM values over five types of constraints: load, store,
copy, address-of, and offset. We run pointer analysis on the
constraint graph to derive the pointsTo set for each
memory location. We build the stack trace statically by
traversing the call graph, identifying each API call, and
conducting interprocedural analysis.

A. Thread-sensitive Pointer Analysis

Alg. 1 describes our pointer analysis. We traverse the
SmallIR twice. First, we iterate through all instructions from
the entry point, add forked functions to the call graph, and
add new objects or assignment constraints to the constraint
graph. However, most function calls depend on the type of
caller to resolve the call target. To address this problem, we
store these function calls as indirect function calls in funPtrs,
and compute the correct call target with the pointsTo set



in the second pass. The pointsTo set contains all the
potential types of an object. We resolve the function call to the
correct call target, and expand the newly discovered function
body for recursive iteration.

Algorithm 1: Pointer Analysis in SmallRace
Input: SmallIR for all functions module, a list of function pointers

funPtrs
Output: Call Graph callgraph; Constraint Graph consgraph

1 Function solve(module, entry):
2 foreach Instruction inst ∈ entry do
3 switch typeof(inst) do
4 case fork(callee) do
5 callgraph.addCallEdge(entry, inst.callee)
6 solve(module, inst.callee)

7 case newObject(obj) do
8 consgraph.addConsEdge(inst.obj, inst, addr of)

9 case assign(lhs, rhs) do
10 consgraph.addConsEdge(inst.rhs, inst.lhs, copy)

11 case call(callee, args) do
12 if isDirectCall(inst) then
13 callgraph.addCallEdge(entry, callee)
14 solve(module, callee)

15 else
16 funPtrs.append(inst, args(0))

17 Function updateFunPtrs():
18 foreach Instruction inst, Pointer p ∈ funPtrs do
19 prefix = inst.getName()
20 foreach suffix ∈ p.pointsTo() do
21 func = module.getFunc(prefix+suffix)
22 callgraph.addCallEdge(inst.getCaller(), func)
23 solve(func, module.getFunc(inst))

24 solve(module, module.getFunc(”main”))
25 updateFunPtrs()

We adopt Andersen’s pointer analysis [32] to resolve the
pointsTo set of variables iteratively. Pointer analysis is a static
analysis technique to derive the mapping between a pointer and
a variable or heap allocation. In SmallIR, all variables are
defined using a pointer type. We heavily use the address-of
and copy constraints in our constraint graph to facilitate
pointer analysis and infer types on demand to allow faster
pointer analysis and type inference. The call graph is built up
in the same process of constructing the constraint graph for
efficiency.

Our pointer analysis is thread-sensitive. Compared to
traditional k-CFA [33] that uses k method call sites as the
context, we use k thread creation sites (i.e., creating a new
thread by st.fork*) as the context. We demonstrate the
feasibility of using pointer reasoning to statically improve the
accuracy of type inference and polymorphism.

Besides type inference, pointer analysis is also good
for identifying shared objects. For example, variables with
the same name but defined under different scopes are
eliminated from race checking. For heap allocation APIs,
we capture the function call to st.model.instVar and
st.model.newObject. We add to our constraints graph
in three situations. (1) newObject b = obj(): we add an
address-of constraint from the pointer to the actual object
being allocated. (2) OpaqueAssign a=b: we add a copy edge
in our constrain graph from a to b. (3) Anonymous Functions:

for each function call to st.anonfun, we add a copy edge from
the call site of the anonymous function to the actual function
declaration.

B. Program and Thread Traces
A program trace is a sequence of important events related

to race conditions, including memory read/write, thread fork,
lock/unlock, and wait/signal. We build program traces by
traversing the call graph, and capturing key events related
to each thread, as shown in Alg. 2.

Algorithm 2: Event Trace Building
Input: SmallIR module;
Output: Thread Trace threads

1 Function genFuncSummary(node, module):
2 foreach Instruction inst ∈ node do
3 switch typeof(inst) do
4 case assign(lhs, rhs) do
5 summary.add(load, rhs)
6 summary.add(store, lhs)

7 case call(callee(arg)) do
8 if callee.isRead() then
9 summary.add(load, arg)

10 if callee.isWrite() then
11 summary.add(store, arg)

12 case fork(callee) do
13 summary.add(fork, callee)

14 return summary

15 Function traverse(node, thread):
16 summary = genFuncSummary(node, module)
17 foreach Instruction inst ∈ summary do
18 switch typeof(inst) do
19 case load(obj) do
20 trace.add(read, obj)

21 case store(obj) do
22 trace.add(write, obj)

23 case call(callee) or fork(callee) do
24 traverse(callee, fork?threads.new():thread)

25 threads.add(thread0)
26 traverse(module.getFunc(”main”), thread0)

Starting from the entry function, we process each SmallIR
instruction and use the semantics to produce events. For
example, for a function call st.anonfun*, we construct
a Smalltalk Fork IR, and a ForkEvent is generated. A new
ThreadTrace will be built for each fork event. For function
call st.model.opaqueAssign(a,b), we generate two
events, i.e., read for pointer b and write to pointer a.

Fig. 3 shows the program trace constructed for Lst. 3. The
main thread (Thread0) has 5 events, including forking a
new thread at the third block. The thread created on Line 24
(Thread1) forks a new thread on Line 8 (Thread2). There
are two data races in this listing. The first race involves a read
of local variable local_y in Thread0 (T0.e4) and a write
to local_y at Thread2 (T2.e3), without proper protections.
The second race is related to a write to local_x in Thread0
(T0.e5) and a read of local_x in Thread1 (T1.e1).

C. Race Detection
The race detection report is generated with Alg. 3. We first

analyze shared memory accesses by processing read and write



T0.e1
write: local_x

T0.e2
write: local_y

T0.e3
fork: anonfun.1

T1.e1
read: local_x

T1.e2
write: local_t1

T1.e3
read: local_t1

T1.e4
write: local_t2

T1.e5
fork: anonfun.2

T2.e1
read: local_t1
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write: local_y

T0.e4
read: local_y

T0.e5
write: local_x

Thread0

Thread1

Thread2

Happens-before

Race

Fig. 3. Generated program trace for Lst. 3.

Algorithm 3: Race Detection in SmallRace
Input: Write Events writes, All Read or Write Events others
Output: Race Report report

1 Function checkRace(write, other):
2 if isLocalV ar(write) and isLocalV ar(other) then
3 return false

4 if happensBefore(write, other) or sharesLock(write, other) then
5 return false

6 return true

7 foreach write ∈ writes do
8 foreach other ∈ others do
9 if checkRace(write, other) then

10 report.collect(write, other)

events of each thread and organizing them based on the pointsTo
set of each shared memory access. As two memory accesses
could be protected by a common lock or have a Happens-
Before (HB) order, we conduct a series of analyses to filter
out false positives. Specifically, we handle the HB relationship,
lock set algorithm, and local variable filtering. We construct a
happens-before graph from the events currently stored
in the program. Successfully building the HB graph depends
on the heuristic that each event has an increasing ID per thread.
Edges are added between program-ordered events and sync
events (fork/wait/notify).

Fig. 3 illustrates our happens-before analysis. At Thread1,
the event T1.e5 is a fork event spawning Thread2. We add
one edge from T1.e5 to the first event T2.e1 in Thread2
in the HB graph. We define the sync events as the events with
an HB edge on them. Inside the same thread, we model the
HB relationship by the event ID instead of explicitly creating
an HB edge. To check if an event Tx.ey (Thread x, event
y) can reach an event Ta.eb, we find the closest sync event

after Tx.ey and find the closest sync event before Ta.eb.
We conclude that there is an HB order if the sync event after
Tx.ey can reach the sync event before Ta.eb by traversing
the HB graph on sync event edges.

To handle synchronization operations, we employ an event-
driven lockset algorithm instead of adding an HB edge.
SmallRace will not report a race if the shared memory is
protected by a shared lock or other synchronization techniques.

D. Result Ranking

We incorporate several heuristics to rank the data race report,
and assign a score to each data race as a confidence level. Our
heuristics are extracted from observations on the production
code base and developers’ feedback. We assign a higher score to
the two memory accesses if both of their stack traces contain a
thread creation (i.e., st.fork*) or contain a special signature
indicating that one function can be called remotely in parallel.
We will also increase the score if there is a critical section
protecting one memory access, while the other memory access
of the same variable is not protected. This is often the case
where a programmer forgot to add protection to a variable
accessed concurrently. Heuristics in function names are also
considered and can be configured in our framework. Function
names to initialize the system, such as startup, and setup, or
to terminate the system, such as clearall, shutdown, terminate,
and deactivate, are being called mostly once per lifetime in our
code base. We assign a lower score to a reported race where
the stack traces contain those function keywords.

E. Extensibility and Entry Points

SmallRace is highly configurable with a number of command-
line arguments as well as a configuration file. It can potentially
be extended to be applied in other programming languages
with similar characteristics to Smalltalk and creates a compiler
infrastructure that facilities other researchers. With SmallIR,
SmallRace can be extended to detect other types of errors
for other dynamically typed languages, such as Python and
JavaScript. With the same abstract machine in Java threads
and JavaScript’s await operator, the techniques in SmallRace
are broadly applicable to many other languages using green
threads or native threads.

While adapting SmallRace to a new language is
kept straightforward, certain adjustments are necessary.
Modifications include translating the language into LLVM-
like IR (frontend) and modeling the semantics of the new
language (analysis backend). Generally, the effort required for
these adaptations is significantly less than the effort to create
a new race detector from scratch.

With numerous interfaces in Smalltalk libraries that can
be called by multiple threads, we model those APIs in our
configuration. There are two main types of APIs specific
to Smalltalk. First, we model the read and write functions
provided by core libraries. Second, application-specific classes
are supposed to be thread-safe. For example, in our production
code base, any ”ClassName” used in ”CTRemote export
#ClassName” is designed to run in parallel. Therefore, all



TABLE II
BENCHMARK STATISTICS

Image LoC #Classes #Functions #SO2 #Locks #Threads #EP2

Test 1 85 1 7 5 0 5 1
Test 2 134 2 16 5 0 2 1
Test 3 86 1 8 9 0 3 1
MemoryMonitor 940 1 131 57 1 136 126
AlarmMonitor 15,387 62 2,071 49 1 56 55
Image 1 266,242 3,233 58,526 4,106 22 6,087 5,945
Image 2 109,309 1,922 25,980 1,037 8 1,865 1,741
Image 3 41,171 469 8,143 1,187 6 1,813 1,757
Image 4 45,626 813 12,150 35 0 71 70
Image 5 35,400 246 5,074 395 7 483 437
Image 6 40,551 265 4,336 20 0 28 26
Image 7 591,219 3,237 74,025 6,332 25 11,381 11,184
2SO stands for shared objects, and EP stands for entry points.

functions of these classes can be considered as entry points,
which can be potentially invoked by threads in parallel.

TABLE III
TIME EFFICIENCY EVALUATION RESULTS

Image IR-Gen(s) PTA(s) Trace(s) Detect(s)
Test 1 2.48 0.42 0.01 0.01
Test 2 2.80 0.44 0.01 0.01
Test 3 1.20 0.43 0.01 0.01
MemoryMonitor 22.99 1.32 0.07 0.17
AlarmMonitor 319.64 3.62 0.26 0.50
Image 1 22,309.39 15,322.93 14,469.46 20,711.06
Image 2 3,853.27 757.89 182.48 348.09
Image 3 1,367.14 197.10 41.94 80.42
Image 4 1,255.91 8.59 1.12 1.73
Image 5 609.35 30.44 6.31 12.05
Image 6 291.59 2.14 0.14 0.24
Image 73 41,982.00 46,155.71 9,936.85 48,720.08
3Image 7 statistics are collected by summing chunks splits.

VI. EVALUATION

We evaluated SmallRace extensively on an AWS instance
(m5 2xlarge) with a range of benchmarks provided by our
industry partners that are executed concurrently for various
applications, including three small Smalltalk tests extracted
from real-world applications, two medium-sized Smalltalk
applications (MemoryMonitor and AlarmMonitor), and a large-
scale production code. All benchmarks and their statistics are
reported in Table II.

The three small tests illustrate three common patterns of race
conditions that had happened in the production code before.
Test 1 contains a data race caused by two threads accessing the
same instance variable without being protected by the critical
section. Test 2 uses a queue to pass through a shared object and
execute the code block in a different thread. Test 3 is presented
in Lst 1. The large-scale production code contains 22 files, and
we generate our test workspace file with all functions with
CTRemote signature as entry points.

A. Experimental Results

We collect the time consumption of the SmallRace-IR-
Generator (IR-Gen), time for pointer analysis (PTA), building
thread trace (Trace), data race detection (Detect) in Table III,

TABLE IV
EVALUATION RESULTS ON NUMBER OF RACE.

Image #Total #Real #Mild #FP
Test 1 9 9 0 0
Test 2 3 3 0 0
Test 3 1 1 0 0
MemoryMonitor 10 8 2 0
AlarmMonitor 5 4 1 0
Image 1 63 4/10 2/10 4/10
Image 2 56 2/10 1/10 7/10
Image 3 16 2/10 2/10 6/10
Image 4 100 7/10 1/10 2/10
Image 5 59 3/10 6/10 1/10
Image 6 23 4/10 1/10 5/10
Image 7 100 3/10 4/10 3/10

and the reported races in Table IV. SmallRace took around 64
hours to finish analyzing all the benchmarks, on an average of
200 seconds per KLOC. After ranking, SmallRace reports the
top 100 races at most for each image. For each race report, we
inspected the races from the top until at most 10 races (manually
by both the authors and the developers). With the detailed call
stack and racy variable provided by SmallRace, the effort
of analyzing a race report is minimized. In total, SmallRace
detected about 400 races, and most of them are considered as
either real races or mild races. A real race indicates that the
race can lead to bad consequences in production, and should
be fixed. A mild race indicates that the race is a valid race, but
the consequence is either intended or benign, and developers
will not fix it immediately. A common case of mild races is
setter/getter races on boolean variables, where setters or getters
can be invoked by a UI thread at any time.

B. One example of the Real Race

Lst. 4 shows a race found by SmallRace in Memory-
MonitorApp, which is a long-running component involving
multiple threads started at the beginning of the application.
The race is on loggerLock, a lock used to protect logging
operations from multiple threads. On Line 350, the lazy
initialization of loggerLock may race with a concurrent
write to loggerLock on Line 356. The consequence of this
race is that multiple different loggerLock may be created



line 356, column 1 in MemoryMonitor.st AND line
350, column 3 in MemoryMonitor.st

Shared variable: at line 350 of MemoryMonitor.st
350| ( loggerLock isNil ) ifTrue: [ self

loggerLock: RecursionLock new ].
Thread 1 (write):
>356| loggerLock := aSemaphore</body>
>>>Stack Trace:
>>> st.startUp$MemoryMonitor
>>> st.startLoggerProcess

[MemoryMonitor/MemoryMonitor.st:979]
>>> st.startLoggerProcess$MemoryMonitor
>>> st.forkAt:

[MemoryMonitor/MemoryMonitor.st:1125]
>>> st.loggerLock

[MemoryMonitor/MemoryMonitor.st:1131]
>>> st.loggerLock$MemoryMonitor
>>> st.loggerLock:

[MemoryMonitor/MemoryMonitor.st:350]
Thread 2 (read):
>350| ( loggerLock isNil ) ifTrue: [ self

loggerLock: RecursionLock new ].
>>>Stack Trace:
>>> st.imageStartUpComplete$MemoryMonitor
>>> st.fork

[MemoryMonitor/MemoryMonitor.st:877]
>>> st.startImageLockupProcess

[MemoryMonitor/MemoryMonitor.st:890]
>>>

st.startImageLockupProcess$MemoryMonitor
>>> st.forkAt:

[MemoryMonitor/MemoryMonitor.st:1070]
>>> st.imageLockupDetected:

[MemoryMonitor/MemoryMonitor.st:1085]
>>>

st.imageLockupDetected:$MemoryMonitor
>>> st.logMessage:

[MemoryMonitor/MemoryMonitor.st:1055]
>>> st.logMessage:$MemoryMonitor
>>> st.loggerLock

[MemoryMonitor/MemoryMonitor.st:1119]

Listing 4. Races found in MemoryMonitorApp

resulting in the lock protection. From the developer: ”This
means that the loggerLock is “almost” created during
instantiation, but because it is within the fork and at a lower
priority, the loggerProcess is executed much later. This is
a potential timing issue, depending on where the execution
is when loggerProcess task is pre-empted, but I can see
opportunities for failure. This is a good catch.”

C. Limitations and Future Work

SmallRace does not offer soundness or completeness
guarantees. SmallRace can introduce false positives as it does
not reason about branch conditions. We perform multiple
analyses to eliminate false positives. Specifically, we utilize
the happens-before relationship, lock set algorithm, and local
variable filtering. Despite these efforts, a significant number
of false positives occur due to the lack of condition reasoning
in infeasible stack traces.

Also, our tool has false negatives due to the over-
approximation of pointer analysis and the trade-off between
efficiency and precision (the number of pointsTo variable for
each memory access). Considering the incompleteness of the
code base, information may be absent such as some super

class’s definitions, which can introduce imprecision. As we do
not have access to the version history of the code base, it is
not feasible to calculate the false negatives rate.

There is still room for improvement. Some semantic
and language features are yet to be implemented due to
implementation costs. The precision of the underlying data
flow analysis and type inference can be further improved with
the implementation of more language features in Smalltalk
(e.g., heterogeneous types). We will leave those as future work.

VII. RELATED WORK

Although race detection has been a fruitful research topic, we
are not aware of any prior research on detecting race conditions
in Smalltalk. There are limited studies available that focus on
the static analysis of dynamic languages. Besides the design-
level novelty, what’s distinguished in SmallRace is the ability
to deal with dynamic language features in Smalltalk such as
code blocks and type inferences. Most prior work on race
detection has focused on statically typed programs, such as
Java or C/C++.

The LanguageKit framework developed by David Chis-
nall [34] is the closest to our work. It implements a reusable
AST, interpreter, JIT, and static compiler for dynamic object-
oriented languages, including a Smalltalk front-end. It also
generates LLVM IR and allows the mixing of Smalltalk and C
code. LanguageKit proposed a frontend for Pragmatic Smalltalk,
which is a different dialect of Smalltalk Language closely tied
to Étoilé OS. Different from SmallRace, it does not have
pointer analysis and does not address the various technical
challenges in detecting race conditions, such as type inference,
code blocks, scopes, thread traces, modeling synchronization
semantics, and identifying shared variables.

Banerjee, Utpal, et al. [35] propose a rigorous mathematical
theory for data race detection. Most race detectors adopt either
static analysis [2], [3], [36] or dynamic analysis [37]–[44],
and use happens-before [37], [39], [42], [45]. Using a static
approach allows for the analysis of source code without the
need to set up the execution environment. Chord [2] is a static
race detection tool for Java combining a series of static analysis
techniques to reduce false positives. D4 [3] presents a fast
concurrency analysis framework that detects concurrency bugs
in real time. RacerD [36] detects data races in Java efficiently
and is scalable with continuous integration.

A dynamic data race analyzer processes the stack trace
on a particular execution path, and captures necessary
information during runtime. ThreadSanitizer [37] adopts a
hybrid algorithm [38] based on the happens-before and locksets
algorithm [29]. Helgrind+ [39] is an efficient dynamic race
detector to detect synchronization defects in parallel threads,
which incorporates condition variables.

VIII. CONCLUSIONS

We present the design and implementation of SmallRace, the
first end-to-end static race detection framework for Smalltalk.
SmallRace addresses several technical challenges in analyzing
dynamic language features and in reasoning about threads and



race conditions. This framework has demonstrated real value
in an industrial setting for addressing a highly challenging
problem. Our evaluation shows that SmallRace is fast, precise,
and scalable. It is easy to use, achieves high coverage, and
has been applied to a large-scale complex Smalltalk codebase
from our industry partners, discovering 37 new race conditions
confirmed by the developers.
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